Machine Learning mit Python und Keras, TensorFlow 2 und Scikit-learn - Das umfassende Praxis-Handbuch für Data Science, Deep Learning und Predictive Analytics
Verlag | MITP-Verlag |
Auflage | 2021 |
Seiten | 768 |
Format | 17,0 x 2,9 x 24,0 cm |
Gewicht | 1259 g |
Reihe | mitp Professional |
ISBN-10 | 374750213X |
ISBN-13 | 9783747502136 |
Bestell-Nr | 74750213A |
Datenanalyse mit ausgereiften statistischen Modellen des Machine LearningsAnwendung der wichtigsten Algorithmen und Python-Bibliotheken wie NumPy, SciPy, Scikit-learn, Keras, TensorFlow 2, Pandas und MatplotlibBest Practices zur Optimierung Ihrer Machine-Learning-Algorithmen
Mit diesem Buch erhalten Sie eine umfassende Einführung in die Grundlagen und den effektiven Einsatz von Machine-Learning- und Deep-Learning-Algorithmen und wenden diese anhand zahlreicher Beispiele praktisch an. Dafür setzen Sie ein breites Spektrum leistungsfähiger Python-Bibliotheken ein, insbesondere Keras, TensorFlow 2 und Scikit-learn. Auch die für die praktische Anwendung unverzichtbaren mathematischen Konzepte werden verständlich und anhand zahlreicher Diagramme anschaulich erläutert.
Die dritte Auflage dieses Buchs wurde für TensorFlow 2 komplett aktualisiert und berücksichtigt die jüngsten Entwicklungen und Technologien, die für Machine Learning, Neuronale Netze und Deep Learning wichtig si nd. Dazu zählen insbesondere die neuen Features der Keras-API, das Synthetisieren neuer Daten mit Generative Adversarial Networks (GANs) sowie die Entscheidungsfindung per Reinforcement Learning.
Ein sicherer Umgang mit Python wird vorausgesetzt.
Aus dem Inhalt:
Trainieren von Lernalgorithmen und Implementierung in PythonGängige Klassifikationsalgorithmen wie Support Vector Machines (SVM), Entscheidungsbäume und Random ForestNatural Language Processing zur Klassifizierung von FilmbewertungenClusteranalyse zum Auffinden verborgener Muster und Strukturen in Ihren DatenDeep-Learning-Verfahren für die BilderkennungDatenkomprimierung durch DimensionsreduktionTraining Neuronaler Netze und GANs mit TensorFlow 2Kombination verschiedener Modelle für das Ensemble LearningEinbettung von Machine-Learning-Modellen in WebanwendungenStimmungsanalyse in Social NetworksModellierung sequenzieller Daten durch rekurrente Neuronale NetzeReinforcement Learning und Implementierung von Q -Learning-Algorithmen
Rezension:
"Mit diesem Buch erhalten Interessierte eine umfassende sowie praktische Einführung in die Grundlagen und den effektiven Einsatz von Machine-Learning- und Deep-Learning-Algorithmen. [...] Die dritte Auflage des Buches wurde für TensorFlow2 komplett aktualisiert und berücksichtigt die jüngsten Entwicklungen und Technologien, die für Machine Learning, Neuronale Netze und Deep Learning wichtig sind." (SPS Magazin, 07/2022)