MLOps - Kernkonzepte im Überblick - Machine-Learning-Prozesse im Unternehmen nachhaltig automatisieren und skalieren
Verlag | dpunkt |
Auflage | 2021 |
Seiten | 204 |
Format | 16,7 x 1,3 x 24,2 cm |
Gewicht | 392 g |
Reihe | Animals |
ISBN-10 | 3960091729 |
ISBN-13 | 9783960091721 |
Bestell-Nr | 96009172A |
Erfolgreiche ML-Pipelines entwickeln und mit MLOps organisatorische Herausforderungen meistern Stellt DevOps-Konzepte vor, die die speziellen Anforderungen von ML-Anwendungen berücksichtigen Umfasst die Verwaltung, Bereitstellung, Skalierung und Überwachung von Machine-Learning-Modellen im Unternehmensumfeld Für Data Scientists und Data Engineers, die nach besseren Strategien für den produktiven Einsatz ihrer ML-Modelle suchen
Machine-Learning-Modelle zu entwickeln ist das eine, sie im Produktivbetrieb effizient einzusetzen, eine ebenfalls nicht zu unterschätzende Herausforderung - so die Erfahrung vieler Unternehmen. Dieses Buch zeigt Ihnen, wie Sie mithilfe durchdachter MLOps-Strategien eine stabile DevOps-Umgebung für Ihre ML-Anwendungen aufbauen, Ihre Modelle kontinuierlich verbessern und langfristig warten.
Das Buch erläutert MLOps-Schlüsselkonzep te, mit denen Data Scientists und Data Engineers ML-Pipelines und -Workflows optimieren können. Anhand von Fallbeispielen aus der ganzen Welt geben neun ML-Experten praxiserprobte Hilfestellungen zu den fünf Schritten des Modelllebenszyklus - Entwicklung, Preproduction, Deployment, Monitoring und Governance. Sie erfahren auf diese Weise, wie robuste MLOps-Prozesse umfassend in den ML-Produktworkflow integriert werden können.
Erschließen Sie den Wert Ihrer Data-Science-Anwendungen für Ihr Unternehmen vollständig, indem Sie Störfaktoren in ML-Pipelines und -Workflows ausräumen Verfeinern Sie Ihre ML-Modelle durch Retraining, regelmäßiges Tuning und grundlegende Überarbeitung, um eine dauerhaft hohe Qualität zu gewährleisten Organisieren Sie den MLOps-Lebenszyklus so, dass Risiken, die in den Modellen stecken könnten, minimiert werden, damit die Ergebnisse unverzerrt, ausgewogen und nachvollziehbar sind Optimieren Sie ML-Modelle nicht nur für die eigene Deployment-Pipeline, sondern auch für externe Partner, deren Systeme komplexer und weniger standardisiert sind
»Wenn Sie auf der Suche nach Strategien sind, um die konkreten Prozesse der ML-Entwicklung zwischen den Teams zu verbessern, ist dieses Buch genau das Richtige für Sie.«
- Adi Polak, Senior Software Engineer, Microsoft