x
Deep Learning and Convolutional Neural Networks for Medical Image Computing

Deep Learning and Convolutional Neural Networks for Medical Image Computing - Precision Medicine, High Performance and Large-Scale Datasets

Gebundene Ausgabe, Sprache: Englisch
171,19 €
inkl. MwSt. versandkostenfrei!

Produktdetails  
Verlag Springer
Auflage 2017
Seiten 326
Format 15,8 x 2,2 x 24,3 cm
Gewicht 714 g
Artikeltyp Englisches Buch
Reihe Advances in Computer Vision and Pattern Recognition
ISBN-10 3319429981
EAN 9783319429984
Bestell-Nr 31942998A

Produktbeschreibung  

This book presents a detailed review of the state of the art in deep learning approaches for semantic object detection and segmentation in medical image computing, and large-scale radiology database mining. A particular focus is placed on the application of convolutional neural networks, with the theory supported by practical examples. Features: highlights how the use of deep neural networks can address new questions and protocols, as well as improve upon existing challenges in medical image computing; discusses the insightful research experience of Dr. Ronald M. Summers; presents a comprehensive review of the latest research and literature; describes a range of different methods that make use of deep learning for object or landmark detection tasks in 2D and 3D medical imaging; examines a varied selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to interleaved text and image deep mining on a large-sc ale radiology image database.

Inhaltsverzeichnis:

Part I: Review.- Chapter 1. Deep Learning and Computer-Aided Diagnosis for Medical Image Processing: A Personal Perspective.- Chapter 2. Review of Deep Learning Methods in Mammography, Cardiovascular and Microscopy Image Analysis.- Part II: Detection and Localization.- Chapter 3. Efficient False-Positive Reduction in Computer-Aided Detection Using Convolutional Neural Networks and Random View Aggregation.- Chapter 4. Robust Landmark Detection in Volumetric Data with Efficient 3D Deep Learning.- Chapter 5. A Novel Cell Detection Method Using Deep Convolutional Neural Network and Maximum-Weight Independent Set.- Chapter 6. Deep Learning for Histopathological Image Analysis: Towards Computerized Diagnosis on Cancers.- Chapter 7. Interstitial Lung Diseases via Deep Convolutional Neural Networks: Segmentation Label Propagation, Unordered Pooling and Cross-Dataset Learning.- Chapter 8. Three Aspects on Using Convolutional Neural Networks for Computer-Aided Detection in Medical Imaging.- Chapter 9. Cell Detection with Deep Learning Accelerated by Sparse Kernel.- Chapter 10. Fully Convolutional Networks in Medical Imaging: Applications to Image Enhancement and Recognition.- Chapter 11. On the Necessity of Fine-Tuned Convolutional Neural Networks for Medical Imaging.- Part III: Segmentation.- Chapter 12. Fully Automated Segmentation Using Distance Regularized Level Set and Deep-Structured Learning and Inference.- Chapter 13. Combining Deep Learning and Structured Prediction for Segmenting Masses in Mammograms.- Chapter 14. Deep Learning Based Automatic Segmentation of Pathological Kidney in CT: Local vs. Global Image Context.- Chapter 15. Robust Cell Detection and Segmentation in Histopathological Images using Sparse Reconstruction and Stacked Denoising Autoencoders.- Chapter 16. Automatic Pancreas Segmentation Using Coarse-to-Fine Superpixel Labeling.- Part IV: Big Dataset and Text-Image Deep Mining.- Chapter 17. Interleaved Text/Image Deep Mining on a Large-Scale RadiologyImage Database.

Mehr Angebote zum Thema  

Verpasse keine Highlights & Aktionen. Jetzt zum Newsletter anmelden.

Wenn Sie unseren Newsletter abonnieren, willigen Sie damit ein, dass Ihre E-Mail Adresse gespeichert und gemäß Art. 6 Abs. 1 a) DSGVO verarbeitet wird. Einzelheiten zur Speicherung und Nutzung Ihrer Daten finden Sie unter Datenschutz und Datensicherheit. Zur Optimierung unseres Angebots werten wir in anonymisierter Form aus, wie viele Links in unserem Newsletter angeklickt werden. Diese Auswertung lässt keinen Rückschluss auf Ihre Person oder sonstige Ihrer Daten zu und wird nicht mit anderen personenbezogenen Daten oder Bestelldaten verbunden. Die Auswertung der Klickzahlen erfolgt allein zu statistischen Zwecken.
Eine Abmeldung ist jederzeit über einen Link am Ende jeden Newsletters möglich.
1 Mängelexemplare sind Bücher mit leichten Beschädigungen wie angestoßenen Ecken, Kratzer auf dem Umschlag, Beschädigungen/Dellen am Buchschnitt oder ähnlichem. Diese Bücher sind durch einen Stempel "Mängelexemplar" als solche gekennzeichnet. Die frühere Buchpreisbindung ist dadurch aufgehoben. Angaben zu Preissenkungen beziehen sich auf den gebundenen Preis eines mangelfreien Exemplars.

2 Mängelexemplare sind Bücher mit leichten Beschädigungen wie angestoßenen Ecken, Kratzer auf dem Umschlag, Beschädigungen/Dellen am Buchschnitt oder ähnlichem. Diese Bücher sind durch einen Stempel "Mängelexemplar" als solche gekennzeichnet. Angaben zu Preissenkungen beziehen sich auf den ehemaligen gebundenen Preis eines mangelfreien Exemplars.

3 Die Preisbindung dieses Artikels wurde aufgehoben. Angaben zu Preissenkungen beziehen sich auf den vorherigen gebundenen Ladenpreis.

4 Der Preisvergleich bezieht sich auf die unverbindliche Preisempfehlung, wie diese vom Hersteller oder von einem Lieferanten zur Verfügung gestellt wird.

5 Diese Artikel haben leichte Beschädigungen wie angestoßenen Ecken, Kratzer oder ähnliches und können teilweise mit einem Stempel "Mängelexemplar" als solche gekennzeichnet sein. Der Preisvergleich bezieht sich auf die unverbindliche Preisempfehlung, wie diese vom Hersteller oder von einem Lieferanten zur Verfügung gestellt wird.

6 Der Preisvergleich bezieht sich auf die Summe der Einzelpreise der Artikel im Paket. Bei den zum Kauf angebotenen Artikeln handelt es sich um Mängelexemplare oder die Preisbindung dieser Artikel wurde aufgehoben oder der Preis wurde vom Verlag gesenkt oder um eine ehemalige unverbindliche Preisempfehlung des Herstellers. Angaben zu Preissenkungen beziehen sich auf den vorherigen Preis. Der jeweils zutreffende Grund wird Ihnen auf der Artikelseite dargestellt.

7 Der gebundene Preis des Buches wurde vom Verlag gesenkt. Angaben zu Preissenkungen beziehen sich auf den vorherigen gebundenen Preis.

8 Sonderausgabe in anderer Ausstattung, inhaltlich identisch. Angaben zu Preissenkungen beziehen sich auf den Vergleich Originalausgabe zu Sonderausgabe.

9 Der Preisvergleich bezieht sich auf den Originalpreis eines neuen Exemplares.

Alle Preisangaben inkl. gesetzlicher MwSt. und ggf. zzgl. Versandkosten.