Analysis: Funktionen, Differentialrechnung; Bd.1

Analysis: Funktionen, Differentialrechnung; Bd.1

44,99€ inkl. MwSt.
versandkostenfrei
In den Warenkorb
Kartoniert/Broschiert
Springer, Berlin, Springer-Lehrbuch, 1990, 492 Seiten, Format: 16,5x24x2 cm, ISBN-10: 3540528288, ISBN-13: 9783540528289, Bestell-Nr: 54052828A


Produktbeschreibung

Behandelt wird die "klassische" Analysis so breit und ausführlich, wie sie der spätere Anwender, der Ingenieur, Informatiker oder Wirtschaftswissenschaftler im Berufsleben benötigt: Elementare reelle Funktionen, komplexwertige Funktionen (Ortskurven), Differentialrechnung für Funktionen einer oder zweier Veränderlicher und deren Anwendung. Das Lehrbuch entspricht den Erfordernissen zum Gebrauch neben Servicevorlesungen an TU, TH und FH, zeichnet sich darüberhinaus durch sein anwendungsorientiertes, etwas breiter angelegtes Konzept aus und ist für das Selbststudium geeignet. Methodische und anschauliche Beschreibungen stehen im Vordergrund; das Maß an Abstraktion ist bewußt gering gehalten. Learning-by-doing wird erleichtert durch Übungsaufgaben mit vollständigen Lösungen.

Inhaltsverzeichnis:

1. Elementare reelle Funktionen.- 1.1 Grundlagen.- 1.1.1 Der reelle Zahlenkörper.- 1.1.2 Der binomische Satz.- 1.1.3 Ungleichungen.- 1.1.4 Der absolute Betrag.- 1.2 Reelle Funktionen.- 1.2.1 Begriff. Darstellungsformen.- 1.2.2 Symmetrieeigenschaften.- 1.2.3 Kongruente Verschiebung. Affine Stauchung.- 1.2.4 Schranken. Nullstellen.- 1.2.5 Umkehrfunktionen.- 1.3 Polynome.- 1.3.1 Polynombegriff. Polynomwerte. Polynom Verknüpfungen.- 1.3.2 PolynomumOrdnung. Vollständiges Horner-Schema.- 1.3.3 Polynomgleichungen: Lösungen.- 1.3.4 Polynomgleichungen: Lösungsverfahren.- 1.3.5 Interpolationspolynome.- 1.3.6 Stellenwertsysteme.- 1.4 Gebrochen-rationale Funktionen.- 1.4.1 Charakteristische Merkmale.- 1.4.2 Partialbruchzerlegung von Polynombrüchen.- 1.5 Algebraische Funktionen.- 1.6 Kreis-und Bogenfunktionen.- 1.7 Exponential- und Logarithmusfunktionen.- 1.8 Hyperbel-und Areafunktionen.- 1.9 Funktionspapiere.- 2. Komplexwertige Funktionen.- 2.1 Einführung.- 2.2 Die komplexe Gerade.- 2.3 Die Inversion der Geraden.- 2.4 Der Allgemeine Kreis.- 3. Differentialrechnung.- 3.1 Grenzwerte.- 3.1.1 Konvergente Zahlenfolgen.- 3.1.2 Grenzwerte von Funktionen.- 3.1.3 Stetigkeit von Funktionen.- 3.2 Der Begriff der Ableitungsfunktion.- 3.2.1 Die Ableitungsfunktion als Steigungsfunktion.- 3.2.2 Die Ableitung als Grenzwert.- 3.2.3 Bestimmung von Ableitungsfunktionen.- 3.3 Formale Ableitungsrechnung.- 3.3.1 Konstanten-, Faktor-und Summenregel.- 3.3.2 Die Potenzregel für ganze positive Exponenten.- 3.3.3 Produkt-und Quotientenregel.- 3.3.4 Ableitungen höherer Ordnung.- 3.3.5 Die Kettenregel.- 3.3.6 Ableitung der Kreisfunktionen.- 3.3.7 Ableitung der Bogenfunktionen.- 3.3.8 Ableitung von Logarithmus-und Exponentialfunktion.- 3.3.9 Logarithmisches Ableiten.- 3.3.10 Ableitung der Hyperbel- und Areafunktionen.- 3.4 Differentiale. Differentialquotienten. Differentialoperatoren.- 3.4.1 Der Begriff des Differentials.- 3.4.2 Rechnen mit Differentialen.- 3.4.3 Der Differentialquotient.- 3.4.4 Differentialoperatoren.- 3.5 Kurvenuntersuchungen.- 3.5.1 Steigen und Fallen. Extrempunkte.- 3.5.2 Links-und Rechtskurven. Wendepunkte.- 3.5.3 Sonstige geometrische Eigenschaften.- 3.5.4 Untersuchung algebraischer Funktionen.- 3.5.5 Untersuchung transzendenter Funktionen.- 3.5.6 Angewandte Maxima-und Minimaaufgaben.- 3.6 Weitere Anwendungen der Differentialrechnung.- 3.6.1 Tangenten und Tangentenabschnitte.- 3.6.2 Linearisierung von Funktionen.- 3.6.3 Der Mittelwertsatz.- 3.6.4 Grenzwertbestimmung mit der Regel von Bernoulli und de l'Hospital.- 3.6.5 Das Newtonsche Iterationsverfahren.- 3.7 Funktionen von zwei reellen Veränderlichen.- 3.7.1 Der Funktionsbegriff.- 3.7.2 Analytische Darstellungsformen.- 3.7.3 Geometrische Darstellungsformen.- 3.7.4 Skalare Darstellung durch Leitertafeln.- 3.7.5 Raumkurven.- 3.7.6 Partielle Ableitungen.- 3.7.7 Das totale (vollständige) Differential.- 3.7.8 Ableitung impliziter Funktionen.- 3.7.9 Ableiten von Parameter dar Stellungen.- 3.7.10 Ableitenvon Vektorfunktionen.- 3.7.11 Krümmungskreise und Schmiegungsparabeln.- 3.7.12 Ableiten von Funktionen in Polarkoordinaten.- 4. Anhang: Lösungen der Aufgaben.

1 Mängelexemplare sind Bücher mit leichten Beschädigungen wie angestoßenen Ecken, Kratzer auf dem Umschlag, Beschädigungen/Dellen am Buchschnitt oder ähnlichem. Dieses Bücher sind durch einen Stempel "Mängelexemplar" als solche gekennzeichnet. Die frühere Buchpreisbindung ist dadurch aufgehoben. Angaben zu Preissenkungen beziehen sich auf den gebundenen Preis eines mangelfreien Exemplars.

2 Mängelexemplare sind Bücher mit leichten Beschädigungen wie angestoßenen Ecken, Kratzer auf dem Umschlag, Beschädigungen/Dellen am Buchschnitt oder ähnlichem. Dieses Bücher sind durch einen Stempel "Mängelexemplar" als solche gekennzeichnet. Angaben zu Preissenkungen beziehen sich auf den ehemaligen gebundenen Preis eines mangelfreien Exemplars.

3 Die Preisbindung dieses Artikels wurde aufgehoben. Angaben zu Preissenkungen beziehen sich auf den vorherigen gebundenen Ladenpreis.

4 Der Preisvergleich bezieht sich auf die ehemalige unverbindliche Preisempfehlung des Herstellers.

5 Diese Artikel haben leichte Beschädigungen wie angestoßenen Ecken, Kratzer oder ähnliches und können teilweise mit einem Stempel "Mängelexemplar" als solche gekennzeichnet sein. Der Preisvergleich bezieht sich auf die ehemalige unverbindliche Preisempfehlung des Herstellers.

6 Der Preisvergleich bezieht sich auf die Summe der Einzelpreise der Artikel im Paket. Diese Artikel unterliegen nicht der Preisbindung, die Preisbindung dieser Artikel wurde aufgehoben oder der Preis wurde vom Verlag gesenkt. Angaben zu Preissenkungen beziehen sich auf den vorherigen Preis. Der jeweils zutreffende Grund wird Ihnen auf der Artikelseite dargestellt.
Alle Preisangaben inkl. gesetzlicher MwSt. und ggf. zzgl. Versandkosten.